Genome Sequencing \& Assembly

 Michael SchatzNov. I8, 2015
CSHL Adv. Sequencing Course

Outline

I. Assembly theory
I. Assembly by analogy
2. De Bruijn and Overlap graph
3. Coverage, read length, errors, and repeats
2. Whole Genome Alignment
I. Aligning \& visualizing with MUMmer
3. Genome assemblers
I. ALLPATHS-LG: recommended for Illumina-only projects
2. Celera Assembler: recommended for long read projects
4. Summary \& Recommendations

Shredded Book Reconstruction

- Dickens accidentally shreds the first printing of A Tale of Two Cities
- Text printed on 5 long spools

It was	t thessbldse be.simoestinite	wass and lweonstrof tintesses	it was the age of	

- How can he reconstruct the text?
- 5 copies $\times 138,656$ words $/ 5$ words per fragment $=138 \mathrm{k}$ fragments
- The short fragments from every copy are mixed together
- Some fragments are identical

It was the best of
age of wisdom, it was
best of times, it was
it was the age of
it was the age of
it was the worst of
of times, it was the
of times, it was the
of wisdom, it was the
the age of wisdom, it
the best of times, it
the worst of times, it
times, it was the age
times, it was the worst
was the age of wisdom,
was the age of foolishness,
was the best of times,
was the worst of times,
wisdom, it was the age
worst of times, it was

Greedy Reconstruction

```
It was the best of
|was the best of times,
times, it was the worst
times, it was the age
```

The repeated sequence make the correct reconstruction ambiguous

- It was the best of times, it was the [worst/age]

Model the assembly problem as a graph problem

de Bruijn Graph Construction

- $\mathrm{D}_{\mathrm{k}}=(\mathrm{V}, \mathrm{E})$
- $V=$ All length- k subfragments $(k<l)$
- $E=$ Directed edges between consecutive subfragments
- Nodes overlap by k-I words

Original Fragment

It was the best of

Directed Edge

- Locally constructed graph reveals the global sequence structure
- Overlaps between sequences implicitly computed
de Bruijn, 1946
Idury and Waterman, 1995
Pevzner, Tang, Waterman, 2001

de Bruijn Graph Assembly

The full tale

... it was the best of times it was the worst of times ...
... it was the age of wisdom it was the age of foolishness ...
... it was the epoch of belief it was the epoch of incredulity ...
... it was the season of light it was the season of darkness ...
... it was the spring of hope it was the winder of despair ...

Milestones in Genome Assembly

1977. Sanger et al. ${ }^{\text {st }}$ Complete Organism 5375 bp

2000. Myers et al.
$\|^{\text {st }}$ Large WGS Assembly.
Celera Assembler. I 16 Mbp

1995. Fleischmann et al.
$\|^{\text {st }}$ Free Living Organism TIGR Assembler. I.8Mbp

200 I.Venter et al., IHGSC Human Genome
Celera Assembler/GigaAssembler. 2.9 Gbp

1998. C.elegans SC ${ }^{\text {st }}$ Multicellular Organism BAC-by-BAC Phrap. 97Mbp

2010. Li et al.
$\|^{\text {st }}$ Large SGS Assembly.
SOAPdenovo 2.2 Gbp

Like Dickens, we must computationally reconstruct a genome from short fragments

Assembly Applications

- Novel genomes

- Metagenomes

- Sequencing assays
- Structural variations
- Transcript assembly

Ingredients for a good assembly

High coverage is required

- Oversample the genome to ensure every base is sequenced with long overlaps between reads
- Biased coverage will also fragment assembly

Reads \& mates must be longer than the repeats

- \quad Short reads will have false overlaps forming hairball assembly graphs
- With long enough reads, assemble entire chromosomes into contigs

Quality

Errors obscure overlaps

- Reads are assembled by finding kmers shared in pair of reads
- High error rate requires very short seeds, increasing complexity and forming assembly hairballs

Current challenges in de novo plant genome sequencing and assembly Schatz MC,Witkowski, McCombie,WR (20I2) Genome Biology. I2:243

Illumina Sequencing by Synthesis

1. Prepare
2. Attach

3. Image

4. Basecall

Metzker (20I0) Nature Reviews Genetics II:3I-46
http://www.youtube.com/watch?v=I99aKKHcxC4

Typical sequencing coverage

Contig \quad Reads
Imagine raindrops on a sidewalk
We want to cover the entire sidewalk but each drop costs \$1

Ix sequencing

$2 x$ sequencing

$4 x$ sequencing

$8 x$ sequencing

Poisson Distribution

The probability of a given number of events occurring in a fixed interval of time and/or space if these events occur with a known average rate and independently of the time since the last event.

Formulation comes from the limit of the binomial equation

Resembles a normal distribution, but over the positive values, and with only a single parameter.

Key property:

- The standard deviation is the square root of the mean.

$$
P(k)=\frac{\lambda^{k}}{k!} e^{-\lambda}
$$

Unitigging / Unipathing

- After simplification and correction, compress graph down to its non-branching initial contigs
- Aka "unitigs","unipaths"
- Unitigs end because of (1) lack of coverage, (2) errors, (3) heterozygosity, and (4) repeats

Repetitive regions

Repeat Type	Definition / Example	Prevalence
Low-complexity DNA / Microsatellites	$\left(\mathrm{b}_{1} \mathrm{~b}_{2} \ldots \mathrm{~b}_{\mathrm{k}}\right)^{\mathrm{N}}$ where $\mathrm{I} \leq \mathrm{k} \leq 6$ CACACACACACACACACACA	2%
SINEs (Short Interspersed Nuclear Elements)	Alu sequence $(\sim 280 \mathrm{bp})$ Mariner elements $(\sim 80 \mathrm{bp})$	13%
LINEs (Long Interspersed Nuclear Elements)	$\sim 500-5,000 \mathrm{bp}$	21%
LTR (long terminal repeat) retrotransposons	Tyl-copia,Ty3-gypsy, Pao-BEL $(\sim 100-5,000 \mathrm{bp})$	8%
Other DNA transposons	3%	
Gene families \& segmental duplications		4%

- Over 50% of mammalian genomes are repetitive
- Large plant genomes tend to be even worse
- Wheat: 16 Gbp; Pine: 24 Gbp

Repeats and Coverage Statistics

- If n reads are a uniform random sample of the genome of length G, we expect $k=n \Delta / G$ reads to start in a region of length Δ.
- If we see many more reads than k (if the arrival rate is $>A$), it is likely to be a collapsed repeat

$$
\operatorname{Pr}(X-\text { copy })=\binom{n}{k}\left(\frac{X \Delta}{G}\right)^{k}\left(\frac{G-X \Delta}{G}\right)^{n-k} \quad A(\Delta, k)=\ln \left(\frac{\operatorname{Pr}(1-\text { cop } y)}{\operatorname{Pr}(2-\text { copy })}\right)=\ln \left(\frac{\frac{(\Delta n / G)^{k}}{k!} e^{\frac{-\Delta n}{G}}}{\frac{(2 \Delta n / G)^{k}}{k!} e^{\frac{-2 \Delta n}{G}}}\right)=\frac{n \Delta}{G}-k \ln 2
$$

The fragment assembly string graph
Myers, EW (2005) Bioinformatics. 21 (suppl 2): ii79-85.

Paired-end and Mate-pairs

Paired-end sequencing

- Read one end of the molecule, flip, and read the other end
- Generate pair of reads separated by up to 500bp with inward orientation 300bp

Mate-pair sequencing

- Circularize long molecules (I-IOkbp), shear into fragments, \& sequence
- Mate failures create short paired-end reads

10kbp

2x100 @~10kbp (outies)

2x100 @ 300bp (innies)

Scaffolding

- Initial contigs (aka unipaths, unitigs) terminate at
- Coverage gaps: especially extreme GC
- Conflicts: errors, repeat boundaries
- Use mate-pairs to resolve correct order through assembly graph
- Place sequence to satisfy the mate constraints
- Mates through repeat nodes are tangled
- Final scaffold may have internal gaps called
 sequencing gaps
- We know the order, orientation, and spacing, but just not the bases. Fill with Ns instead

N50 size

Def: 50% of the genome is in contigs as large as the N50 value
Example: I Mbp genome 50%

1000

300

100


```
N50 size = 30 kbp
    (300k+100k+45k+45k+30k= 520k >= 500kbp)
```

A greater N50 is indicative of improvement in every dimension:

- Better resolution of genes and flanking regulatory regions
- Better resolution of transposons and other complex sequences
- Better resolution of chromosome organization
- Better sequence for all downstream analysis

Outline

I. Assembly theory
I. Assembly by analogy
2. De Bruijn and Overlap graph
3. Coverage, read length, errors, and repeats
2. Whole Genome Alignment
I. Aligning \& visualizing with MUMmer
3. Genome assemblers
I. ALLPATHS-LG: recommended for Illumina-only projects
2. Celera Assembler: recommended for long read projects
4. Summary and Recommendations

Whole Genome Alignment with MUMmer

Slides Courtesy of Adam M. Phillippy
University of Maryland

Goal of WGA

- For two genomes, A and B, find a mapping from each position in A to its corresponding position in B

Not so fast...

- Genome A may have insertions, deletions, translocations, inversions, duplications or SNPs with respect to B (sometimes all of the above)

WGA visualization

- How can we visualize whole genome alignments?
- With an alignment dot plot
$-N \times M$ matrix
- Let $i=$ position in genome A
- Let $j=$ position in genome B
- Fill cell ((i, j) if A_{i} shows similarity to B_{j}

- A perfect alignment between A and B would completely fill the positive diagonal

SV Types

- Different structural variation types / misassemblies will be apparent by their pattern of breakpoints
- Most breakpoints will be at or near repeats
- Things quickly get complicated in real genomes

Alignment of 2 strains of Y. pestis http://mummer.sourceforge.net/manual/

Outline

I. Assembly theory
I. Assembly by analogy
2. De Bruijn and Overlap graph
3. Coverage, read length, errors, and repeats

2. Whole Genome Alignment

I. Aligning \& visualizing with MUMmer
3. Genome assemblers
I. ALLPATHS-LG: recommended for Illumina-only projects
2. Celera Assembler: recommended for long read projects
4. Summary and Recommendations

Short read assembly with ALLPATHS-LG lain MacCallum

How ALLPATHS-LG works

reads

ALLPATHS-LG sequencing model

Libraries (insert types)	Fragment size (bp)	Read length (bases)	Sequence coverage (x)	Required
Fragment	180^{*}	≥ 100	45	yes
Short jump	3,000	≥ 100 preferable	45	yes
Long jump	6,000	≥ 100 preferable	5	no $^{* *}$
Fosmid jump	40,000	≥ 26	1	no $^{* *}$

*See next slide.
**For best results. Normally not used for small genomes. However essential to assemble long repeats or duplications.

Cutting coverage in half still works, with some reduction in quality of results.

All: protocols are either available, or in progress.

Read doubling

To close a read pair (red), we require the existence of another read pair (blue), overlapping perfectly like this:

More than one closure allowed (but rare).

Localization

I. Find 'seed' unipaths, evenly spaced across genome (ideally long, of copy number $\mathrm{CN}=1$)
II. Form neighborhood around each seed

and are extended by other unipaths

Population structure of Oryza sativa

Indica

Total Span: 344.3 Mbp Contig N50: 22.2 kbp

Aus

Nipponbare

Total Span: 354.9 Mbp Contig N50: 21.9 kbp

Whole genome de novo assemblies of three divergent strains of rice (O. sativa) documents novel gene space of aus and indica
Schatz, MC, Maron, L, Stein, et al (2014) Genome Biology. I5:506 doi:I0.I I86/s I3059-0|4-0506-z

Pan-genomics of draft assemblies

Strategy:

I. Align the genomes to each other (MUMmer)
2. Identify segments of genome A that do not align anywhere to genome B (BEDTools)
\rightarrow Megabases specific to each genome!!!!
3. Screen regions that fail to align with their k-mer frequencies (jellyfish)

- In reality,"Genome specific regions" averaged over 10,000x kmer coverage while unique regions were $\sim 50 \mathrm{x}$
\rightarrow 100s of KB specific to each genome!!!

Reference-free kmer analysis

IR64 - Sub1A (A-2) Kmer Coverage

Draft assemblies are difficult to conclusively analyze to determine if a given sequence is truly specific to one genome or another

- The sequence may be mis-assembled (or incompletely assembled in the other genome)
- Use k-mer analysis to rule out misassemblies
- Here we see the Subla (A-2) locus present only in IR64

Strain specific regions

(A) Nipponbare

(B) IR64

(C) DJ123

Oryza sativa Gene Diversity

Overall sequence content

In each sector, the top number is the total number of base pairs, the middle number is the number of exonic bases, and the bottom is the gene count. If a gene is partially shared, it is assigned to the sector with the most exonic bases.

Genic content

In each sector, the top number is the median CDS length, the middle number is the average number of exons per gene, and the bottom is the percentage InterPro/homology.

Strain specific regions

- Very high quality representation of the "gene-space"
- Overall identity ~99.9\%
- Less than I\% of exonic bases missing
- Genome-specific genes enriched for disease resistance
- Reflects their geographic and environmental diversity
- Detailed analysis of the S5 hybrid sterility locus, the Sub/ submergence tolerance locus, the LRK gene cluster associated with improved yield, and the Pupl cluster associated with phosphorus deficiency
- Assemblies fragmented at (high copy) repeats
- Missing regions have mean k-mer coverage >10,000x
- Difficult to identify full length gene models and regulatory features

Long read assembly with the Celera Assembler

ARTICLES

The map-based sequence of the rice genome

International Rice Genome Sequencing Project*
Rice, one of the world'
and is a model plant fo 389 Mb genome, inclu transposable-element Arabidopsis. In a recipi proteome. Twenty-nin classes of transposabl maize and sorghum ge nuclear chromosomes. traits. The additional s accelerate improveme

Chr	Sequenced bases (bp)		n arm regions Length (Mb)	Telomeric gaps* (Mb)	Centromeric gapt (Mb)	rDNA $\ddagger(\mathrm{Mb})$	Total (Mb)	Coverage5 (\%)
1	43,260,640	5	0.33	0.06	1.40		45.05	99.1
2	35,954,074	3	0.10	0.01	0.72		36.78	99.7
3	36,189,985	4	0.96	0.04	0.18		37.37	97.3
4	35,489,479	3	0.46	0.20			36.15	98.7
5	29,733,216	6	0.22	0.05			30.00	99.3
6	30,731,386	1	0.02	0.03	0.82		31.60	99.8
7	29,643,843	1	0.31	0.01	0.32		30.28	98.9
8	28,434,680	1	0.09	0.05			28.57	99.7
9	22,692,709	4	0.13	0.14	0.62	6.95	30.53	98.8
10	22,683,701	4	0.68	0.13	0.47		23.96	96.6
11	28,357,783	4	0.21	0.04	1.90	0.25	30.76	99.1
12	27,561,960	0	0.00	0.05	0.16		27.77	99.8
All	370,733,456	36	3.51	0.81	6.59	7.20	388.82	98.9

Contig N50: 5.1 Mbp Total projects costs: >\$100M

Initial Assembly Attempts with early Illumina sequencers circa 2007-2008
 (older Illumina PE76 library with small insert size ~150bp)

Assembler	Data set	N50 contig size	Max contig size	Total assembly size
Velvet	25X Nipponbare	1049 bp	21833 bp	325.8 Mbp
Velvet	50X Nipponbare	411 bp	23095 bp	401.6 Mbp
Abyss	25X Nipponbare	1853 bp	12688 bp	288.4 Mbp
Abyss	$50 X$ Nipponbare	2847 bp		34893 bp

Total costs: $\sim \$ 10 \mathrm{k}$
W.R. McCombie
$>1,000 x$ times cheaper, but at what cost scientifically?

Genomics Arsenal in the year 2015

PacBio SMRT Sequencing

Imaging of fluorescently phospholinked labeled nucleotides as they are incorporated by a polymerase anchored to a Zero-Mode Waveguide (ZMW).

Time

SMRT Sequencing Data

Match	83.7%
Insertions	11.5%
Deletions	3.4%
Mismatch	1.4%

TTGTAAGCAGTTGAAAACTATGTGTGGATTTAGAATAAAGAACATGAAAG $|||\mid$ TTGTAAGCAGTTGAAAACTATGTGT-GATTTAG-ATAAAGAACATGGAAG

ATTATAAA-CAGTTGATCCATT-AGAAGA-AAACGCAAAAGGCGGCTAGG
 A-TATAAATCAGTTGATCCATTAAGAA-AGAAACGC-AAAGGC-GCTAGG

CAACCTTGAATGTAATCGCACTTGAAGAACAAGATTTTATTCCGCGCCCG
 C-ACCTTG-ATGT-AT--CACTTGAAGAACAAGATTTTATTCCGCGCCCG

TAACGAATCAAGATTCTGAAAACACAT-ATAACAACCTCCAAAA-CACAA
 T-ACGAATC-AGATTCTGAAAACA-ATGAT----ACCTCCAAAAGCACAA
-AGGAGGGGAAAGGGGGGAATATCT-ATAAAAGATTACAAATTAGA-TGA
 GAGGAGG---AA-ー---GAATATCTGAT-AAAGATTACAAATT-GAGTGA ACT-AATTCACAATA-AATAACACTTTTA-ACAGAATTGAT-GGAA-GTT
 АСТАААТТСАСАА-АТААТААСАСТТТTAGACAAAATTGATGGGAAGGTT TCGGAGAGATCCAAAACAATGGGC-ATCGCCTTTGA-GTTAC-AATCAAA
 TC-GAGAGATCC-AAACAAT-GGCGATCG-CTTTGACGTTACAAATCAAA ATCCAGTGGAAAATATAATTTATGCAATCCAGGAACTTATTCACAATTAG $|||||||||||||||||||||||||||||||||||||\mid$ ATCCAGT-GAAAATATA--TTATGC-ATCCA-GAACTTATTCACAATTAG

Sample of 100 k reads aligned with BLASR requiring $>100 \mathrm{bp}$ alignment

Single Molecule Sequences

"Corrective Lens" for Sequencing

Consensus Accuracy and Coverage

Coverage can overcome random errors

- Dashed: error model from binomial sampling
- Solid: observed accuracy

Koren, Schatz, et al (2012)
Nature Biotechnology. 30:693-700

$$
\text { CNS Error }=\sum_{i=[c / 2]}^{c}\binom{c}{i}(e)^{i}(1-e)^{n-i}
$$

PacBio Assembly Algorithms

Hybrid/PB-only Error

 CorrectionKoren, Schatz, et al (2012)
Nature Biotechnology. 30:693-700

HGAP/MHAP
 \& Quiver

$\operatorname{Pr}(\mathbf{R} \mid T)$ $\operatorname{Pr}(\mathbf{R} \mid T)=\prod_{k} \operatorname{Pr}\left(R_{k} \mid T\right)$

Quiver Performance Results Comparison to Reference Genome (M. ruber ; 3.1 MB ; SMRT		
	Initial Assemblys)	

PB-only Correction \& Polishing

Chin et al (2013)
Nature Methods. 10:563-569

O. sativa pv Indica (IR64)

PacBio RS II sequencing at PacBio

- Size selection using an 10 Kb elution window on a BluePippin ${ }^{\text {TM }}$ device from Sage Science

O. sativa pv Indica (IR64)

$\begin{array}{ll}\text { Genome size: } & \sim 370 \mathrm{Mb} \\ \text { Chromosome N50: } & \sim 29.7 \mathrm{Mbp}\end{array}$

Assembly	Contig NG50
MiSeq Fragments $25 \times 456 \mathrm{bp}$ $(3$ runs 2×300 @ 450 FLASH)	19 kbp
"ALLPATHS-recipe" $50 \times 2 \times 100 \mathrm{bp}$ @ 80 $36 \times 2 \times 50 \mathrm{bp}$ 2 2100 $51 \times 2 \times 50 \mathrm{bp}$ @ 4800	18 kbp
HGAP + CA $22.7 \times ~ @ ~ 10 \mathrm{kbp}$	4.0 Mbp
Nipponbare BAC-by-BAC Assembly	5.1 Mbp

S5 Hybrid Sterility Locus

Sanger	...ACCCTGATATTCTGAGTTACAAGGCATTCAGCTACTGCTTGCCCACTGACGAGACC...
Illumina	...ACCCTGATATTCTGAGTTACAAGGCATTCAGCTACTGCTTGCCCACTGACGAGACC...
PacBio	...ACCCTGATATTCTGAGTTACAAGGCATTCAGCTACTGCTTGCCCACTGACGAGACC...

S5 is a major locus for hybrid sterility in rice that affects embryo sac fertility.

- Genetic analysis of the S5 locus documented three alleles: an indica (S5-i), a japonica (S5j), and a neutral allele (S5-n)
- Hybrids of genotype S5-i/S5-j are mostly sterile, whereas hybrids of genotypes consisting of S5-n with either S5-i or S5-j are mostly fertile.
- Contains three tightly linked genes that work together in a 'killer-protector'-type system: ORF3, ORF4, ORF5
- The ORF5 indica (ORF5+) and japonica (ORF5-) alleles differ by only two nucleotides

S5 Hybrid Sterility Locus

Sanger
Illumina PacBio
...ACCCTGATATTCTGAGTTACAAGGCATTCAGCTACTGCTTGCCCACTGACGAGACC... ...ACCCTGATATTCTGAGTTACAAGGCATTCAGCTACTGCTTGCCCACTGACGAGACC... ...ACCCTGATATTCTGAGTTACAAGGCATTCAGCTACTGCTTGCCCACTGACGAGACC...

S5 Hybrid Sterility Locus

Sanger Illumina PacBio
...ACCCTGATATTCTGAGTTACAAGGCATTCAGCTACTGCTTGCCCACTGACGAGACC... ...ACCCTGATATTCTGAGTTACAAGGCATTCAGCTACTGCTTGCCCACTGACGAGACC... ...ACCCTGATATTCTGAGTTACAAGGCATTCAGCTACTGCTTGCCCACTGACGAGACC...

5.3Mbp

Improvements from 20kbp to 4 Mbp contig N50:

- Over 20 Megabases of additional sequence
- Extremely high sequence identity (>99.9\%)
- Thousands of gaps filled, hundreds of mis-assemblies corrected
- Complete gene models, promoter regions for nearly every gene
- True representation of transposons and other complex features
- Opportunities for studying large scale chromosome evolution
- Largest contigs approach complete chromosome arms

Current Collaborations

Pineapple

C. glabrata JHU

Human CSHL/OICR

Asian Sea Bass
Temasek Life Sciences

PacBio ${ }^{\circledR}$ Advances in Read Length

Advances in Assembly

"Perfect" Human Assembly

Error correction and assembly complexity of single molecule sequencing reads.
Lee, H*, Gurtowski, J*, Yoo, S, Marcus, S, McCombie, WR, Schatz, MC
http://www.biorxiv.org/content/early/20 /4/06//8/006395

What should we expect from an assembly?

Analysis of dozens of genomes from across the tree of life with real and simulated data

Summary \& Recommendations
< 100 Mbp: HGAP/PacBio2CA @ 100x PB C3-P5
expect near perfect chromosome arms
< IGB: HGAP/PacBio2CA @ 100x PB C3-P5
high quality assembly: contig N50 over IMbp
> IGB: hybrid/gap filling
expect contig N 50 to be 100 kbp - IMbp
> 5GB: Email mschatz@cshl.edu

Error correction and assembly complexity of single molecule sequencing reads.

Lee, H*, Gurtowski, J*, Yoo, S, Marcus, S, McCombie, WR, Schatz, MC
http://www.biorxiv.org/content/early/20/4/06/I8/006395

Assembly Summary

Assembly quality depends on
I. Coverage: low coverage is mathematically hopeless
2. Repeat composition: high repeat content is challenging
3. Read length: longer reads help resolve repeats
4. Error rate: errors reduce coverage, obscure true overlaps

- Assembly is a hierarchical, starting from individual reads, build high confidence contigs/unitigs, incorporate the mates to build scaffolds
- Extensive error correction is the key to getting the best assembly possible from a given data set
- Watch out for collapsed repeats \& other misassemblies
- Globally/Locally reassemble data from scratch with better parameters \& stitch the 2 assemblies together

Acknowledgements

Schatz Lab
Rahul Amin
Han Fang
Tyler Gavin
James Gurtowski Hayan Lee
Zak Lemmon
Giuseppe Narzisi Maria Nattestad Aspyn Palatnick Srividya
Ramakrishnan
Fritz Sedlazeck
Rachel Sherman
Greg Vurture
Alejandro Wences

CSHL
Hannon Lab
Gingeras Lab
Jackson Lab
Hicks Lab Iossifov Lab
Levy Lab
Lippman Lab Lyon Lab Martienssen Lab McCombie Lab Tuveson Lab Ware Lab Wigler Lab

SBU

Skiena Lab Patro Lab

Cornell
Susan McCouch
Lyza Maron
Mark Wright

OICR

John McPherson
Karen Ng
Timothy Beck
Yogi Sundaravadanam

NYU
Jane Carlton
Elodie Ghedin

SIMONS FOUNDATION
AUTISM RESEARCH INITIATIVE
SFARI

Thank you
 http://schatzlab.cshl.edu
 @mike_schatz

