Genome Sequencing \& Assembly

 Michael SchatzJuly 6, 2014
Frontiers of techniques in plant sciences

Outline

I. Assembly theory
I. Assembly by analogy
2. De Bruijn and Overlap graph
3. Coverage, read length, errors, and repeats
2. Whole Genome Alignment
I. Aligning \& visualizing with MUMmer
3. Genome assemblers
I. ALLPATHS-LG: recommended for Illumina-only projects
2. Celera Assembler: recommended for PacBio projects
4. Summary \& Recommendations

Outline

I. Assembly theory
I. Assembly by analogy
2. De Bruijn and Overlap graph
3. Coverage, read length, errors, and repeats
2. Whole Genome Alignment
I. Aligning \& visualizing with MUMmer
3. Genome assemblers
I. ALLPATHS-LG: recommended for Illumina-only projects
2. Celera Assembler: recommended for PacBio projects
4. Summary and Recommendations

Shredded Book Reconstruction

- Dickens accidentally shreds the first printing of A Tale of Two Cities
- Text printed on 5 long spools

It was	t thessbldse be.simoestinite	wass and lweonstrof tintesses	it was the age of	

- How can he reconstruct the text?
- 5 copies $\times 138,656$ words $/ 5$ words per fragment $=138 \mathrm{k}$ fragments
- The short fragments from every copy are mixed together
- Some fragments are identical

It was the best of
age of wisdom, it was
best of times, it was
it was the age of
it was the age of
it was the worst of
of times, it was the
of times, it was the
of wisdom, it was the
the age of wisdom, it
the best of times, it
the worst of times, it
times, it was the age
times, it was the worst
was the age of wisdom,
was the age of foolishness,
was the best of times,
was the worst of times,
wisdom, it was the age
worst of times, it was

Greedy Reconstruction

```
It was the best of
|was the best of times,
times, it was the worst
times, it was the age
```

The repeated sequence make the correct reconstruction ambiguous

- It was the best of times, it was the [worst/age]

Model the assembly problem as a graph problem

de Bruijn Graph Construction

- $\mathrm{D}_{\mathrm{k}}=(\mathrm{V}, \mathrm{E})$
- $V=$ All length- k subfragments $(k<l)$
- $E=$ Directed edges between consecutive subfragments
- Nodes overlap by k-I words

Original Fragment

It was the best of

Directed Edge

- Locally constructed graph reveals the global sequence structure
- Overlaps between sequences implicitly computed
de Bruijn, 1946
Idury and Waterman, 1995
Pevzner, Tang, Waterman, 2001

de Bruijn Graph Assembly

The full tale

... it was the best of times it was the worst of times ...
... it was the age of wisdom it was the age of foolishness ...
... it was the epoch of belief it was the epoch of incredulity ...
... it was the season of light it was the season of darkness ...
... it was the spring of hope it was the winder of despair ...

Assembly Complexity

Assembly Complexity

Milestones in Genome Assembly

1977. Sanger et al. ${ }^{\text {st }}$ Complete Organism 5375 bp

2000. Myers et al.
${ }^{\text {st }}$ Large WGS Assembly.
Celera Assembler. I 16 Mbp

1995. Fleischmann et al.
$\|^{\text {st }}$ Free Living Organism TIGR Assembler. I.8Mbp

200I.Venter et al., IHGSC Human Genome
Celera Assembler/GigaAssembler. 2.9 Gbp

1998. C.elegans SC ${ }^{\text {st }}$ Multicellular Organism BAC-by-BAC Phrap. 97Mbp

2010. Li et al.
${ }^{\text {st }}$ Large SGS Assembly.
SOAPdenovo 2.2 Gbp

Like Dickens, we must computationally reconstruct a genome from short fragments

Assembly Applications

- Novel genomes

- Metagenomes

- Sequencing assays
- Structural variations
- Transcript assembly

Assembling a Genome

I. Shear \& Sequence DNA

2. Construct assembly graph from overlapping reads ...AGCCTAGGGATGCGCGACACGT

GGATGCGCGACACGTCGCATATCCGGTTTGGTCAACCTCGGACGGAC
CAACCTCGGACGGACCTCAGCGAA...
3. Simplify assembly graph

4. Detangle graph with long reads, mates, and other links

Why are genomes hard to assemble?

I. Biological:

- (Very) High ploidy, heterozygosity, repeat content

2. Sequencing:

- (Very) large genomes, imperfect sequencing

3. Computational:

- (Very) Large genomes, complex structure

4. Accuracy:

- (Very) Hard to assess correctness

Ingredients for a good assembly

High coverage is required

- Oversample the genome to ensure every base is sequenced with long overlaps between reads
- Biased coverage will also fragment assembly

Reads \& mates must be longer than the repeats

- Short reads will have false overlaps forming hairball assembly graphs
- With long enough reads, assemble entire chromosomes into contigs

Quality

Errors obscure overlaps

- Reads are assembled by finding kmers shared in pair of reads
- High error rate requires very short seeds, increasing complexity and forming assembly hairballs

Current challenges in de novo plant genome sequencing and assembly Schatz MC,Witkowski, McCombie,WR (20I2) Genome Biology. I2:243

Massively Parallel Sequencing

Illumina HiSeq 2000
Sequencing by Synthesis
$>60 \mathrm{Gbp} /$ day

2. Amplify

3. Image

Metzker (2010) Nature Reviews Genetics II:3I-46 http://www.youtube.com/watch?v=199aKKHcxC4

Typical contig coverage

Contig

Imagine raindrops on a sidewalk How many rain drops should we collect?

Ix sequencing

num bels
Balls in Bins
Total balls: 1000

$2 x$ sequencing

$4 x$ sequencing

$8 x$ sequencing

Poisson Distribution

The probability of a given number of events occurring in a fixed interval of time and/or space if these events occur with a known average rate and independently of the time since the last event.

Formulation comes from the limit of the binomial equation

Resembles a normal distribution, but over the positive values, and with only a single parameter.

Key property: The standard deviation is the square root of the mean.

Coverage and Read Length

Idealized Lander-Waterman model

- Reads start at perfectly random positions
- Contig length is a function of coverage and read length
- Short reads require much higher coverage to reach same expected contig length
- Need even high coverage for higher ploidy, sequencing errors, sequencing biases
- Recommend I00x coverage

Lander Waterman Expected Contig Length vs Coverage

Assembly of Large Genomes using Second Generation Sequencing Schatz MC, Delcher AL, Salzberg SL (20I0) Genome Research. 20:1165-II73.

Unitigging / Unipathing

- After simplification and correction, compress graph down to its non-branching initial contigs
- Aka "unitigs","unipaths"
- Unitigs end because of (1) lack of coverage, (2) errors, (3) heterozygosity, and (3) repeats

Errors in the graph

(Chaisson, 2009)

Repetitive regions

Repeat Type	Definition / Example	Prevalence
Low-complexity DNA / Microsatellites	$\left(\mathrm{b}_{1} \mathrm{~b}_{2} \ldots \mathrm{~b}_{\mathrm{k}}\right)^{\mathrm{N}}$ where $\mathrm{I} \leq \mathrm{k} \leq 6$ CACACACACACACACACACA	2%
SINEs (Short Interspersed Nuclear Elements)	Alu sequence $(\sim 280 \mathrm{bp})$ Mariner elements $(\sim 80 \mathrm{bp})$	13%
LINEs (Long Interspersed Nuclear Elements)	$\sim 500-5,000 \mathrm{bp}$	21%
LTR (long terminal repeat) retrotransposons	Tyl-copia,Ty3-gypsy, Pao-BEL $(\sim 100-5,000 \mathrm{bp})$	8%
Other DNA transposons	3%	
Gene families \& segmental duplications		4%

- Over 50% of mammalian genomes are repetitive
- Large plant genomes tend to be even worse
- Wheat: 16 Gbp; Pine: 24 Gbp

Repeats and Coverage Statistics

- If n reads are a uniform random sample of the genome of length G, we expect $k=n \Delta / G$ reads to start in a region of length Δ.
- If we see many more reads than k (if the arrival rate is $>A$), it is likely to be a collapsed repeat
- Requires an accurate genome size estimate
$\operatorname{Pr}(X-$ copy $)=\binom{n}{k}\left(\frac{X \Delta}{G}\right)^{k}\left(\frac{G-X \Delta}{G}\right)^{n-k}$

$$
A(\Delta, k)=\ln \left(\frac{\operatorname{Pr}(1-\text { copy })}{\operatorname{Pr}(2-\text { copy })}\right)=\ln \left(\frac{\frac{(\Delta n / G)^{k}}{k!} e^{\frac{-\Delta n}{G}}}{\frac{(2 \Delta n / G)^{k}}{k!} e^{\frac{-2 \Delta n}{G}}}\right)=\frac{n \Delta}{G}-k \ln 2
$$

Paired-end and Mate-pairs

Paired-end sequencing

- Read one end of the molecule, flip, and read the other end
- Generate pair of reads separated by up to 500bp with inward orientation 300bp

Mate-pair sequencing

- Circularize long molecules (I-IOkbp), shear into fragments, \& sequence
- Mate failures create short daired-end reads

10kbp

2x100 @ ~10kbp (outies)

2x100 @ 300bp (innies)

Scaffolding

- Initial contigs (aka unipaths, unitigs) terminate at
- Coverage gaps: especially extreme GC regions
- Conflicts: sequencing errors, repeat boundaries
- Iteratively resolve longest, 'most unique' contigs
- Both overlap graph and de Bruijn assemblers initially collapse repeats into single copies
- Uniqueness measured by a statistical test on coverage

N50 size

Def: 50% of the genome is in contigs as large as the N 50 value

Example: I Mbp genome 50%

N50 size $=30 \mathrm{kbp}$
$(300 k+100 k+45 k+45 k+30 k=520 k>=500 k b p)$
Note:
N50 values are only meaningful to compare when base genome size is the same in all cases

Outline

I. Assembly theory
I. Assembly by analogy
2. De Bruijn and Overlap graph
3. Coverage, read length, errors, and repeats
2. Whole Genome Alignment
I. Aligning \& visualizing with MUMmer
3. Genome assemblers
I. ALLPATHS-LG: recommended for Illumina-only projects
2. Celera Assembler: recommended for PacBio projects
4. Summary and Recommendations

Whole Genome Alignment with MUMmer

Slides Courtesy of Adam M. Phillippy
University of Maryland

Goal of WGA

- For two genomes, A and B, find a mapping from each position in A to its corresponding position in B

Not so fast...

- Genome A may have insertions, deletions, translocations, inversions, duplications or SNPs with respect to B (sometimes all of the above)

WGA visualization

- How can we visualize whole genome alignments?
- With an alignment dot plot
$-N \times M$ matrix
- Let $i=$ position in genome A
- Let $j=$ position in genome B
- Fill cell ((i, j) if A_{i} shows similarity to B_{j}

- A perfect alignment between A and B would completely fill the positive diagonal

SV Types

- Different structural variation types / misassemblies will be apparent by their pattern of breakpoints
- Most breakpoints will be at or near repeats
- Things quickly get complicated in real genomes

Alignment of 2 strains of Y. pestis
http://mummer.sourceforge.net/manual/

Outline

I. Assembly theory
I. Assembly by analogy
2. De Bruijn and Overlap graph
3. Coverage, read length, errors, and repeats
2. Whole Genome Alignment
I. Aligning \& visualizing with MUMmer
3. Genome assemblers
I. ALLPATHS-LG: recommended for Illumina-only projects
2. Celera Assembler: recommended for long read projects
4. Summary and Recommendations

Genome assembly with ALLPATHS-LG lain MacCallum

How ALLPATHS-LG works

reads

ALLPATHS-LG sequencing model

Libraries (insert types)	Fragment size (bp)	Read length (bases)	Sequence coverage ($\mathbf{(x)}$	Required
Fragment	180^{*}	≥ 100	45	yes
Short jump	3,000	≥ 100 preferable	45	yes
Long jump	6,000	≥ 100 preferable	5	no $^{* *}$
Fosmid jump	40,000	≥ 26	1	no $^{* *}$

*See next slide.
**For best results. Normally not used for small genomes. However essential to assemble long repeats or duplications.

Cutting coverage in half still works, with some reduction in quality of results.

All: protocols are either available, or in progress.

Read doubling

To close a read pair (red), we require the existence of another read pair (blue), overlapping perfectly like this:

More than one closure allowed (but rare).

Localization

I. Find 'seed' unipaths, evenly spaced across genome (ideally long, of copy number $\mathrm{CN}=1$)
II. Form neighborhood around each seed

and are extended by other unipaths

Population structure of Oryza sativa

Indica

Total Span: 344.3 Mbp Contig N50: 22.2 kbp

Aus

Nipponbare

Total Span: 344.9 Mbp
Contig N50: 25.5 kbp Total Span: 354.9Mbp Contig N50: 21.9 kbp

New whole genome de novo assemblies of three divergent strains of rice (O. sativa) documents novel gene space of aus and indica
Schatz, MC, Maron, L, Stein, et al (2014) Under Review.

Strain specific regions

(A) Nipponbare

Conclusions

- Very high quality representation of the "gene-space"
- Overall identity ~99.9\%
- Less than I\% of exonic bases missing
- Genome-specific genes enriched for disease resistance
- Reflects their geographic and environmental diversity
- Detailed analysis of agriculturally important loci
- Assemblies fragmented at (high copy) repeats
- Missing regions have mean k-mer coverage >10,000x
- Difficult to identify full length gene models and regulatory features

Genome assembly with the Celera Assembler

Celera Assembler

http://wgs-assembler.sf.net

I. Pre-overlap

- Consistency checks

2. Trimming

- Quality trimming \& partial overlaps

3. Compute Overlaps

- Find high quality overlaps

4. Error Correction

- Evaluate difference in context of overlapping reads

5. Unitigging

- Merge consistent reads

6. Scaffolding

- Bundle mates, Order \& Orient

7. Finalize Data

- Build final consensus sequences

Long Read Sequencing Technology

Oxford Nanopore

SMRT Sequencing Data

Match	83.7%
Insertions	11.5%
Deletions	3.4%
Mismatch	1.4%

TTGTAAGCAGTTGAAAACTATGTGTGGATTTAGAATAAAGAACATGAAAG $|||\mid$ TTGTAAGCAGTTGAAAACTATGTGT-GATTTAG-ATAAAGAACATGGAAG

ATTATAAA-CAGTTGATCCATT-AGAAGA-AAACGCAAAAGGCGGCTAGG
 A-TATAAATCAGTTGATCCATTAAGAA-AGAAACGC-AAAGGC-GCTAGG

CAACCTTGAATGTAATCGCACTTGAAGAACAAGATTTTATTCCGCGCCCG
 C-ACCTTG-ATGT-AT--CACTTGAAGAACAAGATTTTATTCCGCGCCCG

TAACGAATCAAGATTCTGAAAACACAT-ATAACAACCTCCAAAA-CACAA
 T-ACGAATC-AGATTCTGAAAACA-ATGAT----ACCTCCAAAAGCACAA
-AGGAGGGGAAAGGGGGGAATATCT-ATAAAAGATTACAAATTAGA-TGA
 GAGGAGG---AA-ー---GAATATCTGAT-AAAGATTACAAATT-GAGTGA ACT-AATTCACAATA-AATAACACTTTTA-ACAGAATTGAT-GGAA-GTT
 АСТАААТТСАСАА-АТААТААСАСТТТTAGACAAAATTGATGGGAAGGTT TCGGAGAGATCCAAAACAATGGGC-ATCGCCTTTGA-GTTAC-AATCAAA
 TC-GAGAGATCC-AAACAAT-GGCGATCG-CTTTGACGTTACAAATCAAA ATCCAGTGGAAAATATAATTTATGCAATCCAGGAACTTATTCACAATTAG $|||||||||||||||||||||||||||||||||||||\mid$ ATCCAGT-GAAAATATA--TTATGC-ATCCA-GAACTTATTCACAATTAG

Sample of 100 k reads aligned with BLASR requiring $>100 \mathrm{bp}$ alignment

PacBio Assembly Algorithms

Gap Filling

 and Assembly UpgradeEnglish et al (2012)
PLOS One. 7(II): e47768

Hybrid/PB-only Error

 CorrectionKoren, Schatz, et al (2012)
Nature Biotechnology. 30:693-700

$<5 x$
PacBio Coverage
> 50x

S. pombe dg2I

PacBio RS II sequencing at CSHL

- Size selection using an 7 Kb elution window on a BluePippin ${ }^{\text {TM }}$ device from Sage Science

S. pombe dg2I

ASM294 Reference sequence

- $12.6 \mathrm{Mbp} ; 3$ chromo + mitochondria; N50: 4.53 Mbp

PacBio assembly using HGAP + Celera Assembler

- 12.7 Mbp ; 13 non-redundant contigs; $\mathrm{N} 50: 3.83 \mathrm{Mbp} ; \mathbf{> 9 . 9 8 \%}$ id

S. pombe dg2I

ASM294 Reference sequence

- $12.6 \mathrm{Mbp} ; 3$ chromo + mitochondria; N50: 4.53Mbp

PacBio assembly using HGAP + Celera Assembler

- 12.7 Mbp ; 13 non-redundant contigs; $\mathrm{N} 50: 3.83 \mathrm{Mbp} ; \mathbf{> 9 . 9 8 \%}$ id

A. thaliana Ler-0

http://blog.pacificbiosciences.com/20|3/08/new-data-release-arabidopsis-assembly.html

Genome size:
Chromosome N50: 23.0 Mbp
Corrected coverage: 20x over IOkb
A. thaliana Ler-0 sequenced at PacBio

- Sequenced using the previous P4 enzyme and C2 chemistry
- Size selection using an 8 Kb to 50 Kb elution window on a BluePippin ${ }^{\text {TM }}$ device from Sage Science
- Total coverage >119x

Sum of Contig Lengths: $\quad 149.5 \mathrm{Mb}$
N50 Contig Length: $\quad 8.4 \mathrm{Mb}$
Number of Contigs: 1788

High quality assembly of chromosome arms
Assembly Performance: $8.4 \mathrm{Mbp} / 23 \mathrm{Mbp}=36 \%$ MiSeq assembly: $63 \mathrm{kbp} / 23 \mathrm{Mbp}=.2 \%$

Human CHMI

Genome size:
Chromosome N50: 90.5 Mbp Average read length: 7,680 bp

CHM I hert sequenced at PacBio

- Sequenced using the P5 enzyme and C3 chemistry
- Size selection using an 20 kb elution window on a BluePippin ${ }^{\text {TM }}$ device from Sage Science
- Total coverage: 54x
Sum of Contig Lengths:
3.2 Gb
N50 Contig Length: Max Contig: 4.38 Mbp 44 Mbp

High quality draft assembly
Assembly Performance: $4.38 \mathrm{Mbp} / 90.5 \mathrm{Mbp}=4.5 \%$
Sanger HuRef assembly: $107 \mathrm{kbp} / 90.5 \mathrm{Mbp}=.1 \%$

Consensus Accuracy and Coverage

Coverage can overcome random errors

- Dashed: error model from binomial sampling
- Solid: observed accuracy

Koren, Schatz, et al (2012)
Nature Biotechnology. 30:693-700

$$
\text { CNS Error }=\sum_{i=[c / 2]}^{c}\binom{c}{i}(e)^{i}(1-e)^{n-i}
$$

Assembly Summary

Assembly quality depends on
I. Coverage: low coverage is mathematically hopeless
2. Repeat composition: high repeat content is challenging
3. Read length: longer reads help resolve repeats
4. Error rate: errors reduce coverage, obscure true overlaps

- Assembly is a hierarchical, starting from individual reads, build high confidence contigs/unitigs, incorporate the mates to build scaffolds
- Extensive error correction is the key to getting the best assembly possible from a given data set
- Watch out for collapsed repeats \& other misassemblies
- Globally/Locally reassemble data from scratch with better parameters \& stitch the 2 assemblies together

What should we expect from an assembly?

Analysis of dozens of genomes from across the tree of life with real and simulated data

Summary \& Recommendations
< 100 Mbp: HGAP/PacBio2CA @ 100x PB C3-P5
expect near perfect chromosome arms
< IGB: HGAP/PacBio2CA @ 100x PB C3-P5
high quality assembly: contig N50 over IMbp
> IGB: hybrid/gap filling
expect contig N 50 to be 100 kbp - IMbp
> 5GB: Email mschatz@cshl.edu

Error correction and assembly complexity of single molecule sequencing reads.

Lee, H*, Gurtowski, J*, Yoo, S, Marcus, S, McCombie, WR, Schatz, MC
http://www.biorxiv.org/content/early/20/4/06/I8/006395

Acknowledgements

Schatz Lab Giuseppe Narzisi Shoshana Marcus James Gurtowski
Alejandro Wences Hayan Lee
Rob Aboukhalil
Mitch Bekritsky
Charles Underwood
Rushil Gupta
Avijit Gupta
Shishir Horane
Deepak Nettem
Varrun Ramani
Piyush Kansal
Eric Biggers
Aspyn Palatnick

CSHL Hannon Lab
Gingeras Lab
Iossifov Lab
Levy Lab
Lippman Lab
Lyon Lab
Martienssen Lab
McCombie Lab
Ware Lab
Wigler Lab

IT Department

NBACC
Adam Phillippy
Sergey Koren

SFARI SIMONS FOUNDATION AUTISM RESEARCH INITIATIVE

U.S. DEPARTMENT OF ENERGY

Thank you!

http://schatzlab.cshl.edu
@mike_schatz

